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In the center of mass frame, the momentum variables of the πN → ππN reaction with
invariant mass W can be specified as

a(~pa) + b(~pb) → c(~pc) + d(~pd) + e(~pe) , (1)

where ~pa = −~pb = ~k with k defined by W = Ea(k)+Eb(k), ~pc+~pd = −~pe = ~k′, and (c+d+e)
can be any possible charged states formed from two pions and one nucleon. The total cross
section of the process Eq. (1) can be written as

σrec
ab→cde =

∫ W−me

mc+md

dσrec

dMcd
dMcd , (2)

with

dσrec

dMcd

=
ρi
k2

16π3
∫

dΩkcddΩk′
kcdk

′

W

1

(2sa + 1)(2sb + 1)

∑

i,f

|
√

EcEdEe〈~pc~pd~pe, f |T |~k, i〉|2 ,

(3)

where ρi = π kEa(k)Eb(k)
W

,i, f denote all spin (sa, saz) and isospin (ta, taz) quantum numbers,
and

∑

i,f means summing over only spin quantum numbers. For a given invariant mass Mcd,
~kcd is the relative momentum between c and d in the center of mass of the sub-system (cd)
. It follows that k′ and kcd are defined by W and Mcd:

Mcd = Ec(kcd) + Ed(kcd) ,

W = Ee(k
′) + Ecd(k

′) ,

Ecd(k
′) =

√

M2
cd + (k′)2 . (4)

(5)

The T -matrix elements in the Eq. (3) are of the following form

〈~pc~pd~pe, f |T |~k, i〉 =
∑

sRz ,tRz

〈~pc, scz, tcz; ~pd, sdz, tdz|HI |~k′, sRz, tRz
〉

W − Ee(k′)− ER(k′)− ΣeR(k′, E)

×〈~k′, sRz, tRz;−~k′, sez, tez|T |~k, saz, taz ;−~k, sbz, tbz〉 , (6)

where R is a bare state which has R → cd decay channel. For the eR = π∆ and eR = ρN
channels, the self-energies are explicitly given by

Σπ∆(k;W ) =
m∆

E∆(k)

∫

q2dq
MπN (q)

[M2
πN(q) + k2]1/2

|f∆→πN(q)|2
W − Eπ(k)− [M2

πN(q) + k2]1/2 + iǫ
, (7)

ΣρN(k;W ) =
mρ

Eρ(k)

∫

q2dq
Mππ(q)

[M2
ππ(q) + k2]1/2

|fρ→ππ(q)|2
W − EN(k)− [M2

ππ(q) + k2]1/2 + iǫ
, (8)
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where m∆ = 1280 MeV, mρ = 812 MeV, MπN(q) = Eπ(q) + EN (q), and Mππ(q) = Eπ(q) +
Eπ(q). The form factors f∆→πN(q) and fρ→ππ(q) are for describing the ∆ → πN and ρ → ππ
decays in the ∆ and ρ rest frames, respectively. They are parametrized as:

f∆→πN(q) = −i
(0.98)

[2(mN +mπ)]1/2

(

q

mπ

)

(

1

1 + [q/(358 MeV)]2

)2

, (9)

fρ→ππ(q) =
(0.6684)√

mπ

(

q

(461 MeV)

)(

1

1 + [q/(461 MeV)]2

)2

. (10)

The σ self-energy ΣσN (k;E) is calculated from a ππ s-wave scattering model with a vertex
function g(q) for the σ → ππ decay and a separable interaction v(q′, q) = h0h(q

′)h(q). The
resulting form is

ΣσN (k;W ) = 〈gGππg〉(k;W ) + τ(k;E)[〈gGππh〉(k;W )]2, (11)

with

τ(k;W ) =
h0

1− h0〈hGππh〉(k;W )
, (12)

〈hGππh〉(k;W ) =
∫

dqq2
Mππ(q)

[M2
ππ(q) + k2]1/2

× h(q)2

W −EN (k)− [M2
ππ(q) + k2]1/2 + iε

, (13)

〈gGππg〉(k;W ) =
mσ

Eσ(k)

∫

dqq2
Mππ(q)

[M2
ππ(q) + k2]1/2

× g(q)2

W −EN (k)− [M2
ππ(q) + k2]1/2 + iε

, (14)

〈gGππh〉(k;W ) =

√

mσ

Eσ(k)

∫

dqq2
Mππ(q)

[M2
ππ(q) + k2]1/2

× g(q)h(q)

W −EN (k)− [M2
ππ(q) + k2]1/2 + iε

. (15)

In the above equations, mσ = 700.0 MeV and the form factors are

g(p) =
g0√
mπ

1

1 + (cp)2
, (16)

h(p) =
1

mπ

1

1 + (dp)2
. (17)

where g0 = 1.638, h0 = 0.556, c = 1.02 fm, and d = 0.514 fm.
For any spins and isospins and c.m. momenta ~p and ~p

′

, the MB → M ′B′ T -matrix
elements in Eq.(6) are in general defined by

〈~p′, sM ′z, tM ′z;−~p′, sB′z, tB′z|T |~p, sMz, tMz;−~p, sBz, tBz〉
=

∑

JM,TTz

∑

L′M ′

L
,S′S′

z

∑

LML,SSz

YL′,M ′

L
(p̂′)Y ∗

L,ML
(p̂)

×〈sM ′, sB′ , sM ′z, sB′z|S ′, S ′

z〉〈L′, S ′,M ′

L, S
′

z|J,M〉〈tM ′, tB′ , tM ′z, tB′z|T, Tz〉
×〈sM , sB, sMz, sBz|S, Sz〉〈L, S,ML, Sz|J,M〉〈tM , tB, tMz, tBz|T, Tz〉
×tJTL′S′M ′B′,LSMB(p

′, p,W ), (18)
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where the matrix elements tJTL′S′M ′B′,LSπN(p
′, p,W ) for M ′B′ = π∆, σN, ρN are the PWA

from the ANL-Osaka model.
The matrix elements of HI of Eq. (6) describe the decay of a resonance R = ∆, ρ, σ into

a two-particle state cd. It is of the following expression

〈~pc, scz, tcz; ~pd, sdz, tdz|HI |~k′, sRz, tRz〉

= δ(~pc + ~pd − ~k′)

√

√

√

√

Ec(kcd)Ed(kcd)MR

Ec(pc)Ed(pd)ER(k′)
〈~kcd, scz, tcz;−~kcd, sdz, tdz|HI |~0, sRz, tRz〉, (19)

with

〈~kcd, scz, tcz;−~kcd, sdz, tdz|HI |~0, sRz, tRz〉
=

∑

Lcd,Scd,mcd,Scdz

[〈sc, sd, scz, sdz|Scd, Scdz〉〈Lcd, Scd, mcd, Scdz|sR, sRz〉

×〈tc, td, tcz, tdz|tR, tRz〉YLcd,mcd
(k̂cd)FLR

cd
,SR

cd
(kcd)]δLcd,L

R
cd
δScd,S

R
cd

. (20)

The vertex functions are

FL∆

πN
,S∆

πN
(q) = if∆→πN(q) , (21)

FLσ
ππ,S

σ
ππ
(q) =

√
2g(q) , (22)

FLρ
ππ,S

ρ
ππ
(q) = (−1)

√
2fρ→ππ(q) , (23)

where L∆
πN = 1, S∆

πN = 3/2, Lσ
ππ = 0, Sσ

ππ = 0, Lρ
ππ = 1, Sρ

ππ = 1. Here it is noted that the
factor

√
2 in Eqs. (22)-(23) comes from the Bose symmetry of pions, and the phase factor

i and (−1) are chosen to be consistent with the non-resonant interactions involving πN∆,
σππ and ρππ vertex interactions. The form factors f∆→πN(q) and fρ→ππ(q) have been in
Eqs.(9)-(10) and g(q) in Eq.(16).

With the above equations, the contribution from πN → π∆ → ππN to the total cross
section σrec

πN→ππN , as defined by Eq. (2)-(3), can be written as

σrec
π∆(W ) =

∫ W−mπ

mN+mπ

dMπN
MπN

E∆(k)

Γ∆/(2π)

|W − Eπ(k)− E∆(k)− Σπ∆(k,W )|2 × σπN→π∆ , (24)

where k and E∆(k) are defined by W and MπN

k =
1

2W
[(W 2 −M2

πN −m2
π)

2 − 4M2
πNm

2
π]

1/2 , (25)

E∆(k) = [m2
∆ + k2]1/2 , (26)

Σπ∆(k,W )is defined in Eq. (7), Γ∆ = −2Im[Σπ∆(k = 0,W )], and

σπN→π∆ =
4π

k2
0

∑

JT,L′S′,LS

2J + 1

(2SN + 1)(2Sπ + 1)
|ρ1/2π∆(k)t

JT
L′S′π∆,LSπN(k, k0;W )ρ

1/2
πN(k0)|2

×〈tπ, tN , tzπ, tzN |T, T z〉2 , (27)

where k0 is defined by W = Eπ(k0) + EN(k0) and ρab(k) = πkEa(k)Eb(k)/W . Similarly,
the contributions of πN → ρN → ππN and πN → σN → ππN to the total cross section
σrec
πN→ππN are

σrec
aN (W ) =

∫ W−mN

2mπ

dMππ
Mππ

Ea(k)

Γa/(2π)

|W − EN(k)− Ea(k)− ΣaN (k,W )|2 × σπN→aN , (28)
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where a = ρ, σ, k is defined by Mππ and W

k =
1

2W
[(W 2 −M2

ππ −m2
N )

2 − 4M2
ππm

2
N ]

1/2 , (29)

Ea(k) = [m2
a + k2]1/2 , (30)

ΣaN (k,W ) for aN = ρN, σN are is defined in Eqs.(104) and (107), Γa = −2Im[ΣaN (k =
0,W )], and

σπN→aN =
4π

k2
0

∑

JT,L′S′,LS

2J + 1

(2SN + 1)(2Sπ + 1)
|ρ1/2aN (k)tJTL′S′aN,LSπN(k, k0;W )ρ

1/2
πN(k0)|2

×〈tπ, tN , tzπ, tzN |T, T z〉2 . (31)

To perform calculations, we need to have the partial-wave amplitudes
tJTL′S′M ′B′,LSπN(p, k,W ) for M ′B′ = π∆, ρN, σN . These PWA from ANL-Osaka model
can be obtained from the webpage which present the following :

< π∆|T (W )|πN >= −ρ
1/2
π∆(p∆)t

JT
L′S′π∆,LSπN(p∆, k,W )ρ

1/2
πN(k) ,

< ρN |T (W )|πN >= −ρ
1/2
ρN (pρ)t

JT
L′S′ρN,LSπN(pρ, k,W )ρ

1/2
πN(k) ,

< σN |T (W )|πN >= −ρ
1/2
σN (pσ)t

JT
L′S′σN,LSπN(pσ, k,W )ρ

1/2
πN(k) ,

(32)

Here the phase space factors account for the effects due to ∆ → πN , σ → ππ and ρ → ππ
decays. Explicitly, we have

ρπ∆(p∆) = π
p∆E∆(p∆)Eπ(p∆)

W
, (33)

where p∆ and E∆(p∆) are defined by W and the invariant mass MπN in the integrations of
Eqs.(2) and (24)

p∆ =
1

2W
[(W 2 −M2

πN −m2
π)

2 − 4M2
πNm

2
π]

1/2 , (34)

E∆(p∆) = [M2
πN + p2∆]

1/2 , (35)

For the calculations of Eqs.(2) and (24), we thus present < π∆|T (W )|πN > in the range
0 ≤ p∆ ≤ p∆,max with

p∆,max =
1

2W
[(W 2 − (mπ +mN)

2 −m2
π)

2 − 4(mπ +mN )
2m2

π]
1/2 . (36)

For the ρN and σN channels, we have

ρ
1/2
σN (pσ) = π

pσEσ(pσ)EN(pσ)

W
, (37)

ρ
1/2
ρN (pρ) = π

pρEρ(pρ)EN(pρ)

W
, (38)
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For a = σ and ρ, we have

pa =
1

2W
[(W 2 −M2

ππ −m2
N )

2 − 4M2
ππm

2
N ]

1/2 , (39)

Ea(pa) = [M2
ππ + p2a]

1/2 . (40)

For the calculation of Eqs.(2) and (28), we thus present < ρN |T (W )|πN > and <
σN |T (W )|πN > in the range 0 ≤ pa ≤ pa,max with

pa,max =
1

2W
[(W 2 − (2mπ)

2 −m2
N)

2 − 4(2mπ)
2m2

N ]
1/2 . (41)

The above equations are for the calculations of the πN → ππN through the resonant π∆,
σN and ρN channels. There are also weaker contributions from the direct production mech-
anisms, as illustrated in Fig. 1, which can be calculated by using the procedures explained
in Ref. [? ].

FIG. 1: The considered vπN,ππN .
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